La comparación de los promedios: cómo las diferencias de situación de determinar los métodos de prueba

Usted puede preguntarse por qué hay tantas pruebas para una tarea tan simple como la comparación de los promedios. Bueno, "comparando los promedios" no se refiere a una sola tarea- es un término general que se puede aplicar a muchas situaciones que difieren de unos a otros sobre la base de:

  • Ya sea que usted está buscando en cambios en el tiempo dentro de un grupo de sujetos o diferencias entre grupos de sujetos (o ambos)

  • ¿Cuántos puntos de tiempo o grupos de sujetos que estés comparando

  • Sea o no la variable numérica que está comparando se distribuye casi normalmente

  • Sea o no los números tienen el mismo propagación (desviación estándar) en todos los grupos a los que está comparando

  • Si usted quiere compensar los posibles efectos de alguna otra variable en la variable que está comparando

Estas condiciones diferentes pueden ocurrir en cualquier y todas las combinaciones, así que hay un montón de posibles situaciones.

La comparación de la media de un grupo de números a un valor hipotetizado

Comparación de una media observada a un valor particular surge en estudios en los que, por alguna razón, no se puede tener un grupo de control (como un grupo que tomó un placebo o un grupo no tratado), así que hay que comparar sus resultados a un control histórico, tales como información de la literatura.

También aparece cuando usted está tratando con datos como resultados de las pruebas que han sido escalados tener algún medio específico en la población general (como 100 para las puntuaciones de CI).

Estos datos por lo general es analizada por el un grupo de prueba t de Student. Para los datos no normales, el Wilcoxon Signed-Rangos de prueba (WSR) se puede utilizar en su lugar.

La comparación de dos grupos de números

Tal vez la situación más común es aquella en la que usted está comparando dos grupos de números. Es posible que desee comparar algunas biomarcador propuesta de una condición médica entre un grupo de sujetos se sabe que tienen esa condición y un grupo conocido por no tenerlo.

O es posible que desee comparar un cierto grado de eficacia de los medicamentos entre los pacientes tratados con el fármaco y los sujetos tratados con un placebo.

O tal vez usted quiere comparar el nivel en sangre de algunas enzimas entre una muestra de hombres y mujeres.

Estas comparaciones son manejados generalmente por la famosa desapareado o "muestra independiente" T de Student (por lo general sólo llamada la prueba de la t). Pero la prueba t se basa en dos supuestos sobre la distribución de los datos en los dos grupos:

  • Los números se distribuyen normalmente (llamó al supuesto de normalidad). Para los datos no normal se puede utilizar el no paramétrico Mann-Whitney (M-W), que su software puede hacer referencia a como el Wilcoxon Suma de Rangos de prueba (WSOR). El WSOR se desarrolló primero, pero se limitó a tamaño igual grupos- la prueba MW generalizar la prueba WSOR trabajar para tamaños iguales o desiguales de grupo.

  • La desviación estándar (SD) es el mismo para ambos grupos (llamó al igualdad de varianza supuesto porque la varianza es simplemente el cuadrado de la SD por lo tanto, si las dos desviaciones estándar son las mismas, las dos varianzas también será el mismo).

    Si los dos grupos tienen notablemente diferentes variaciones (si, por ejemplo, la SD de un grupo es más de 1,5 veces tan grande como la SD de la otra), entonces la prueba t no puede dar resultados fiables, especialmente con grupos de tamaños desiguales. En su lugar, puede utilizar una modificación especial de la prueba de la t de Student, llamado el Prueba de Welch (también llamado el Welch prueba t, o el desigualdad de varianzas y prueba t).

La comparación de tres o más grupos de números

La comparación de tres o más grupos de números es una extensión obvia de la comparación de dos grupos en la sección anterior. Por ejemplo, es posible comparar algunas objetivo de eficacia, como la respuesta al tratamiento, entre los tres grupos de tratamiento (por ejemplo, el fármaco A, B de drogas, y de placebo). Este tipo de comparación es manejado por el Análisis de variación (ANOVA).

Cuando hay una variable de agrupación, como tratamiento, usted tiene un ANOVA de una vía. Si la variable de agrupación cuenta con tres niveles (como fármaco A, el medicamento B, y el placebo en el ejemplo anterior), ha llamado de un solo sentido, de tres niveles ANOVA.

La hipótesis nula del ANOVA de una vía es que todos los grupos tienen el mismo significado la hipótesis alternativa es que al menos un grupo es diferente de al menos otro grupo. El ANOVA produce un único valor de p, y si que p es menor que su criterio elegido (como p lt; 0.05), se puede concluir que algo es diferente en alguna parte.

Pero el ANOVA no te dice qué grupos son diferentes de las que otros. Para ello, es necesario seguir una significativa ANOVA con uno o más llamados post-hoc pruebas, que se ven las diferencias entre cada par de grupos.

También puede utilizar el ANOVA para comparar sólo dos grupos- este de un solo sentido, de dos niveles ANOVA produce exactamente el mismo valor p como la igualdad de varianzas y prueba t de Student no apareado clásico.




» » » » La comparación de los promedios: cómo las diferencias de situación de determinar los métodos de prueba